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Abstract

Two-dimensional and three-dimensional kinetic simulation results reveal the importance of

the Lower-Hybrid Drift Instability LHDI to the onset of magnetic reconnection. Both explicit

and implicit kinetic simulations show that the LHDI heats electrons anisotropically and increases

the peak current density. Linear theory predicts these modifications can increase the growth

rate of the tearing instability by almost two orders of magnitude and shift the fastest growing

modes to significantly shorter wavelengths. These predictions are confirmed by nonlinear kinetic

simulations in which the growth and coalescence of small scale magnetic islands leads to a rapid

onset of large scale reconnection.
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I. INTRODUCTION

Understanding the onset of magnetic reconnection remains an open unsolved question.

Reconnection is observed in a great variety of systems, from special purpose laboratory

experiments [1, 2, 3, 4], to fusion devices [5] and space [6, 7, 8] and astrophysical plasmas

[9, 10, 11]. Our focus is on reconnection in the magnetosphere due to interactions with the

solar wind. Reconnection develops mainly in current sheets at the magnetopause [7] and in

the tail [6].

In both situations, the field can be approximated by a Harris current sheet [12]. In fact, a

reference configuration for such plasmas is proposed, the so-called GEM challenge, to bring

uniformity, repeatability and ease of inter-comparison among various models (see Ref. [13]

and references therein).

The original GEM challenge is initialized with a large magnetic island (perturbation of

10% amplitude) so that both magnetohydrodynamic (MHD) modeling and kinetic simula-

tions can study reconnection, after reconnection starts. Thus, the GEM challenge bypasses

reconnection onset and allows researchers to study the physics of reconnection in its nonlinear

phase. In our simulations, we consider a GEM equilibrium in which an initial perturbation

is absent so that we can study reconnection onset.

There have been many previous studies of reconnection onset. Among kinetic studies,

which are most relevant to collisionless magnetospheric plasmas where the current sheet

thicknesses are of the order of the ion gyroradius or ion skin depth, the onset of reconnection

has been long attributed to the tearing instability [14, 15, 16].

However, the tearing instability saturates at low levels: For typical magnetospheric con-

figurations, tearing instability saturation levels are so low that they yield tiny magnetic

islands with widths of the order of the electron skin depth [17]. These are far too small

to trigger reconnection by any of the recently investigated, nonlinear mechanisms for fast

reconnection [17]. The GEM challenge, with its large initial perturbation, produces a large

enough starting island size to decouple electron and ion motion. This allows fast reconnec-

tion through Hall or whistler physics reconnection [18, 19, 20, 21, 22, 23]. However, without

an initial perturbation, it is difficult for tearing modes alone to produce sufficiently large

islands, and fast reconnection simply does not occur. Conceivably, the tiny islands could

coalesce into larger islands until they reach the critical size necessary for fast reconnection
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physics. However, this mechanism is quite slow, and the present paper seeks other mecha-

nisms that occur on much faster time scales. The tearing instability is also believed to be

suppressed by the presence of even a relatively small vertical magnetic field (i.e., orthogonal

to the current sheet) [24, 25, 26, 27, 28]. We defer this issue to a later study.

Our study of the onset of collisionless magnetic reconnection in a GEM challenge Harris

sheet equilibrium [13] without an initial perturbation shows that the Lower Hybrid Drift

Instability (LHDI) (see Ref. [29] for a recent review of the literature) has an important role

in the onset of reconnection in three dimensions. In two dimensions, tearing instabilities

saturate at low amplitudes, as expected. In three dimensions, the LHDI modifies the current

sheet in ways that cause the tearing mode to grow more vigorously, as also observed by Sholer

et al. [30], and by Shinohara and Fujimoto [31].

Waves at the lower hybrid frequency are observed near reconnection sites [32, 33, 34], and

are often considered as a source of anomalous resistivity. In the earliest model of reconnection

presented by Sweet and Parker, based on resistive MHD, the classical Spitzer resistivity is

not able to explain the reconnection rates observed. Microinstabilities can enhance the

plasma resistivity beyond the classical values, and thus, the LHDI, which is unstable to

a broad range of wavelengths and frequencies, has been studied extensively as a source of

anomalous resistivity. The fastest growing modes have wavelengths kyρe ≈ 1, ω ≈ Ωlh,

are active in the low-β region of the current sheet and are predominantly electrostatic [35].

Longer wavelength modes (ky

√
ρiρe ≈ 1, γ ≈ Ωci) have a large electromagnetic component

and for sufficiently thin sheets can penetrate into the center of the current sheet [36, 37].

However, observations show that the LHDI is confined to the edge of current sheets, its

amplitude seems uncorrelated with the reconnection electric field, and it saturates at too

low amplitude to explain the enhanced reconnection rate through an anomalous resistivity

[32, 33, 34].

Recently, the effects of the Lower-Hybrid drift instability have been revisited. It has

been observed that in the non-linear phase of the evolution of the LHDI in a Harris sheet,

modifications of the profiles are induced.

First, the current sheet is thinned and the electron current profile is peaked [39, 40, 41, 42].

The effect of electron current sheet peaking is primarily due to electron acceleration and not

to electron density modification [30]. From these results the possibility emerges that the
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modifications of the current profile induced by the LHDI allow the onset of secondary insta-

bilities and modify the growth rates of instabilities already present in the initial equilibrium.

Second, previous results based on two-dimensional simulations in the plane of the LHDI

(orthogonal to the magnetic field and to the plane where tearing develops) have indeed shown

that a Kelvin-Helmholtz Instability (KHI) develops at much faster rates than predicted by

linear theories based on the initial equilibrium (see Ref. [42] and references therein).

Furthermore, previous three-dimensional simulations [30, 31, 43] have suggested that the

modification of the initial profile caused by the LHDI can allow the onset of reconnection

and enhance the growth of the tearing instability.

In the present paper we revisit the issue with more detailed simulations and with more

extensive diagnostics, by which we uncover new physics and confirm previous results.

First, we discover that the nonlinear evolution of the LHDI not only heats electrons (an

effect documented in many previous works, e.g. Ref. [36]) but preferentially heats electrons

perpendicular to the magnetic field. Anisotropic heating has a great impact on the onset

of reconnection. Previous work [44, 45, 46, 47] suggests that systems with an electron

(or an ion) anisotropy are more unstable to the tearing instability when the perpendicular

temperature exceeds the parallel temperature. We conduct a number of simulations and

we use the linear Vlasov theory to calculate the effect of temperature anisotropy on tearing

onset.

Second, we confirm that the current sheet is thinned by the LHDI. The thinning can

be explained by nonlinear effects of the LHDI [48]. The thinning has the direct effect of

promoting the growth of the tearing instability. We conduct a number of simulations and

theoretical studies based on linear theory to estimate the effects of current sheet thinning

on the linear growth rate.

In Sec. II, we describe our physical system and numerical approach. In Sec. III, we

present our simulation results. In Sec. IV, we discuss our results and conclusions.
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II. PHYSICAL SYSTEM AND THE NUMERICAL APPROACH

A Harris current sheet equilibrium is considered [12], with an initial magnetic field given

by

B0(z) = B0 tanh(z/L)ex (1)

and a plasma density given by

n0(z) = n0 sech2(z/L) (2)

In the present paper, similar parameters to the GEM challenge are used [13]. In the

GEM challenge, the current sheet thickness is L = 0.5di, the temperature ratio is Ti/Te = 5,

and the ion drift velocity in the y direction is Vi0 = 1.67VA. Rather than the standard mass

ratio, mi/me = 180 is used. The Alfvén velocity, VA, and the ion inertial length, di = c/ωpi,

are defined with the density n0 and the field B0. In contrast to the GEM challenge, no

background density is introduced. This is an important point, since the presence of a

background is strongly stabilizing to the LHDI.

The standard dimensionless parameters necessary to characterize a Harris current sheet

can thus be summarized as, ωpe/Ωce = 2.88, ρi/L = 1.828, mi/me = 180, and Ti/Te = 5,

with vth,s ≡
√

2Ts/ms.

The boundary conditions for the particles and fields are periodic in the x and y directions.

Conducting boundary conditions are imposed for the fields at the z boundaries while reflect-

ing boundary conditions are used for the particles. In order to study the reconnection onset

and in contrast to the GEM challenge [13], the Harris equilibrium is initially unperturbed.

We simulate the dynamics in both the reconnection, (x, z), and current–aligned, (y, z),

planes. In the (x, z) plane, the domain is Lx × Lz = 25.6L × 12.8L, corresponding to

Lx ×Lz = 12.8di × 6.4di. (The GEM challenge domain is Lx ×Lz = 51.2L× 25.6L.) In the

(y, z) plane, the domain is Ly × Lz = 32L × 12.8L. We also perform a three-dimensional

simulation, for which the domain is Lx × Ly × Lz = 25.6L× 16L× 12.8L. (This simulation

is performed with CELESTE3D only, which is described below.)

To investigate the evolution of the system, a kinetic linear code and two nonlinear PIC

simulation codes are used. The linear Vlasov results for the tearing tearing mode are cal-

culated using the formally exact approach described in [37, 49]. This technique employs a

normal mode calculation using a full Vlasov description for both ions and electrons. The
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orbit integrals arising from the linear Vlasov theory are treated numerically using the exact

unperturbed particle orbits and including the form of the perturbation inside the integral.

Both electromagnetic and electrostatic contributions to the field perturbation are retained

and resulting system of integro-differential equations is solved using a finite element expan-

sion of the eigenfunction [37]. The basic strategy involves a normal mode calculation for

perturbations of the form

φ̂ = φ̃(z) exp(−iωt + ikyy + ikxx) , (3)

Â = Ã(z) exp(−iωt + ikyy + ikxx) ,

where the complex functions φ̂, Â are the perturbed electrostatic and vector potentials. For

a given Vlasov equilibrium and for a given choice of wavector (kx,ky), the code computes the

real frequency, growth rate (real and imaginary part of ω) and the complex eigenfunctions

φ̃(z) and Ã(z) which describe the mode structure.

The nonlinear dynamics are simulated by two PIC codes, an explicit simulation code

NPIC, and an implicit simulation code CELESTE3D.

The explicit plasma simulation code NPIC is based on a well-known explicit electro-

magnetic algorithm [50, 51]. The particle trajectories within NPIC are advanced using the

leapfrog technique, and particle moments are accumulated with area weighting. The simu-

lations are run on a parallel computer, using domain decomposition with calls to the MPI

library. (In the present work, the explicit simulations are run on the Los Alamos Q-machine

using as many as 128 nodes.)

The implicit plasma simulation code, CELESTE3D, solves the full set of Maxwell-Vlasov

equations using the implicit moment method [52, 53, 54]. Both Maxwell’s and Newton’s

equations are discretized implicitly in time. The implicit simulations are run on a worksta-

tion.

The non-linear simulations are performed by the two codes with very different simulation

parameters. In the tearing plane, NPIC employs a Nx × Nz = 1280 × 640 grid, a time step

Ωce∆t = 0.03, and 160 · 106 particles. CELESTE3D uses a Nx × Nz = 64 × 64 grid, with

time step Ωce∆t = 0.45, and a total of 5 ·105 computational particles. In the current aligned

plane, NPIC employs Ny × Nz = 1600 × 640 grid, a time step Ωce∆t = 0.03, and 2 · 108

particles , while CELESTE3D uses a Nx ×Nz = 128× 64 grid, with time step Ωce∆t = 0.7,
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and a total of 1 · 105 computational particles. The simulation parameters are summarized

in Table I.

Detailed comparison of the plasma dynamics in NPIC and CELESTE3D are made in a

study of the non-linear phase of magnetic reconnection in plasmas with different β values

[23]. The comparison shows that the physical mechanisms revealed by the two codes agree,

which increases confidence in their validity. Similar comparisons are made with other codes

for the GEM challenge, which show that results with CELESTE3D are comparable in detail

with those of explicit simulations [54, 55]. The same kinds of comparisons are made in this

study.

III. SIMULATION RESULTS

To study the onset of reconnection, we simulate the reference configuration defined above,

similar to the GEM challenge [13], but without initial perturbation, without background

plasma, mi/me = 180, and smaller box size. It is left to the natural noise of PIC to excite

any instability. The result is strikingly different from published GEM challenge results.

The tearing mode saturates at low amplitude, and the reconnected flux is a small fraction

of the available. If a third dimension in the current aligned direction, y, is added to the

simulation of the same physical system, the tearing mode grows to much larger amplitude

before saturating and reconnection occurs. Two effects of the LHDI instability appear to

cause a dramatic change in both the linear and the non-linear phase of the tearing instability

in three-dimensional dynamics, compared with the two-dimensional dynamics. They are

anisotropic electron heating and current sheet thinning. Both of these effects enhance the

linear growth rate of the tearing instability and strongly affect and increase the saturation

amplitude. In the following subsections, the results of the simulations are described in detail.

A. Linear tearing and saturation

1. Two-dimensional simulation

We consider a two-dimensional simulation in the tearing plane (x, z), with the parameters

defined above, similar to the GEM challenge. For this configuration, linear theory predicts
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that the fastest growing tearing mode has wavelength kxL = 0.5 and growth rate γ =

0.176Ωci. In Fig. 1, the amplitude of tearing modes with mx = 1, 2, 3, and 4, corresponding

to kxL = 0.25, 0.5, 0.75, and 1, are shown as a function of time. The growth of higher mode

numbers is negligible.

At the beginning of the simulation, Fig. 1 shows the fast growth of the tearing mode

with mx = 2, kxL = 0.5, in agreement with the linear theory. The growth of the mode with

mx = 1 reveals the merging of two islands.

The tearing instability saturates at a low level. The half-width of the island at saturation

is w ≈ 0.46L at time tΩci = 83. By comparison, GEM challenge reconnection encompasses

the whole domain at tΩci ≈ 30 (w ≈ 10L). CELESTE3D and NPIC agree in showing low

amplitude saturation of the tearing mode, but the coarser grid spacing used in CELESTE3D

does not allow an accurate estimate of the island half width. It should be noted that the

growth of tearing modes in NPIC with mx = 3, 4 at tΩci ≈ 80 is possibly due to the numerical

heating always present in explicit PIC simulations like NPIC, which can in principle affect

the results of long time scale simulations. In any case, this slow growth at late time in the

two-dimensional tearing simulation is several orders of magnitude slower than the growth

and non-linear development of the LHDI in three-dimension that is the subject of the present

work.

The saturation of tearing has been studied theoretically in high and low-β plasmas (e.g.,

see Refs. [17, 56, 57]). In high-β plasmas, like the ones considered in the GEM challenge,

anisotropic heating of electrons causes saturation of tearing [17]. During the growth of

the tearing instability, (Teyy + Tezz)/2Texx (defined as Te⊥/Te||) is reduced below 1, and

Te,⊥/Te|| < 1 has a strongly stabilizing effect on tearing. In fact, in the two-dimensional

simulations of tearing at time tΩci = 80, NPIC gives Te⊥/Te|| = 0.87 and CELESTE3D gives

Te⊥/Te|| = 0.83. For Te⊥/Te|| = 0.87 the linear code predicts the mode mx = 2 (kxL = 0.5)

to be stable and the mode mx = 1 (kxL = 0.25) to be weakly unstable (γ = 0.04Ωci).

However, this growth rate is based on a bi-Maxwellian electron distribution. The simulated

velocity distribution is more complex and might yield a different growth rate.

It should be remarked that in simulations performed in a more extended domain, that

small islands can coalesce repeatedly into larger islands [58]. If the system is big enough,

the final merged island can grow enough to allow the fast reconnection physics shown by
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the GEM challenge. However, this coalescence process occurs on a long time scale compared

to the time scales typical of the three-dimensional instabilities that are the subject of the

present manuscript.

2. Three-dimensional simulation

CELESTE3D is used to perform a three-dimensional simulation of the Harris current

sheet described in Sect. II, in a domain with Lx × Ly × Lz = 25.6L × 16L × 12.8L. Tear-

ing, current aligned (i.e., LHDI and KHI), and oblique instabilities are all involved in the

evolution of the system.

The results of three-dimensional simulations performed by CELESTE3D have been di-

rectly compared with satellite observations [59]. A close agreement has been observed be-

tween simulation and satellite observations, concerning current sheet kinking, current bifur-

cation, and reconnecting modes.

In Fig. 2, the amplitude of the Fourier component of the Bx magnetic field is plotted as a

function of the mode number mx (aligned with the magnetic field) and my (aligned with the

current) at sequential times. The plots average over z and Fast Fourier Transform (FFT)

in (x, y). The average over z suppresses odd parity modes in Bx and thus only even parity

modes, such as KHI and LHDI, appear in Fig. 2. Since Bx and Bz have opposite parity,

the even modes, like the tearing modes (not shown in Fig. 2) are picked up by z-averages

of Fourier modes of Bz.

Fig. 2 shows the development of the initial noise, which excites mostly low mode number

instabilities mx and my at tΩci = 0.2. The presence of the electrostatic LHDI is reflected at

time tΩci = 2.5 through a significant amplitude of the mode number mx = 0, my = 12− 14,

which corresponds to kyρe ≈ 0.2. The electrostatic LHDI, studies of which are summarized in

Ref. [29], is dominated by an electrostatic component on the edge of the current sheet. The

characteristic wavelength is of order kyρe ≈ 1, and frequency ω ≈ Ωlh [35]. The electrostatic

LHDI instability causes a velocity shear that enhances the growth rate of the electromagnetic

LHDI and causes a KHI to grow [41, 42]. Later, at tΩci = 5, the maximum amplitude modes

are mx = 0 and my = 5− 6, which corresponds to ky

√
ρiρe ≈ 0.5). These longer wavelength

modes are the electromagnetic LHDI, which grows at center of the current sheet and has
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wavelength ky

√
ρiρe ≈ 1 and growth rate γ ≈ Ωci [37]. Velocity shear created by the LHDI

triggers a KHI at a still later time, so that by tΩci = 20 the current sheet is dominated by

a single, domain-sized kink with mode numbers mx = 0 and my = 1 (kyL ≈ 0.4).

Figure 3 shows the amplitude of the Fourier modes of the Bz field as a function of mx

and my at different times. Again, averaging over z eliminates the odd parity modes and

leaves only even parity modes. The modes shown in Fig. 3 are complementary to the those

in Fig. 2. The Bz Fourier components are signatures of the tearing instability. The tearing

instability starts to grow significantly at tΩci = 5, with mode number mx = 4 and my = 0

(kxL = 1, a higher frequency than the expected from the linear theory). Subsequently, the

4 magnetic islands merge into 2 islands at tΩci = 10, and then into a 1 that encompasses

the whole domain by tΩci ≈ 20. This is comparable to the reconnection time shown by

the GEM challenge simulation in two dimensions with a large initial perturbation [13]. No

significant growth of oblique tearing modes is observed during the simulation.

Two main conclusions can be drawn from the three-dimensional simulation. First, in

contrast to simulations in two-dimensions, the tearing mode does not saturate at a low

amplitude in three dimensions. Instead, it encompasses the whole domain in a time com-

parable to the GEM challenge simulation with a large initial perturbation [13]. Second, no

significant growth of oblique modes is seen in the simulation.

Thus, it can be argued that the current sheet dynamics depends only on some nonlinear

interaction between the tearing instability, which develops in the (x, z) plane, and current

aligned instabilities, which grow in the (y, z) plane. As the time scale of instabilities in

the (y, z) plane is an order of magnitude faster than the tearing instability, it follows that

the fundamental dynamics of a three-dimensional current sheet can be understood more

conveniently by performing simulations in the (x, z) and (y, z) plane, and analyzing the

effects of the very rapid current aligned instability on the more slowly growing tearing

mode.

B. Current sheet modifications by the LHDI

In simulations performed in the current aligned, (y, z), plane, two modifications of the

initial equilibrium appear to enhance the tearing growth rate. Both are non-linear conse-
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quences of the LHDI.

The LHDI causes anisotropic heating of the electrons. In Fig. 4, the y-averaged electron

temperature ratio, Te⊥/Te||, is plotted as a function of z at tΩci = 0 and at tΩci = 5. In

both the CELESTE3D and NPIC simulations, an electron temperature anisotropy develops

by tΩci = 5 both at the center and on the flanks of the current sheet. The anisotropy ranges

between 2.3 in NPIC and 1.7 in CELESTE3D. The ratio between the ion perpendicular and

parallel temperature, Ti⊥/Ti||, at tΩci = 0 and at tΩci = 5, is also shown in Fig. 4. According

to both PIC codes, ion anisotropic heating is smaller than electron heating, and it is located

mostly on the flanks of the current sheet. As shown in Fig. 5, the electron distribution

function is not gyrotropic. In particular, the peak electron perpendicular temperature in

the z direction (cross sheet direction) is about 25% higher than the temperature in the

y direction (current aligned direction). Moreover, the heating in the z direction is more

focused near the center of the current sheet than the heating in the y direction.

The LHDI also alters the current profile. It thins the current sheet and increases the

value of the peak current density. The alteration is primarily due to electron acceleration:

the ion and the electron density modifications are small [30, 31, 39, 43]. In Fig. 6, the

y-averaged current sheet profile is shown at t = 0 and at tΩci = 4 as a function of z. The

current profiles obtained from both PIC codes agree well and show that the peak current is

enhanced by about 40% over the initial current profile.

The LHDI also creates velocity shear. This latter consequence has been the subject of a

number of papers (see Ref. [42] and references therein). Its main effect is to promote the

growth of a KHI, but the three-dimensional simulation shows that the KHI develops after

the onset of reconnection and thus appears to have little effect on reconnection onset.

C. Effects of the LHDI on tearing

Both anisotropic heating and current peaking enhance the linear growth rate of the

tearing instability and change dramatically its non-linear evolution. The effects of the two

mechanisms on tearing are considered independently in the following subsections.
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1. Electron anisotropy

Figure 7 shows the value of the tearing growth rate γ as a function of kx for Te⊥/Te|| =

0.9, 1, 1.5, 2, and same GEM challenge parameters (in particular Ti/Te⊥ = 5). The growth

rate of the tearing instability increases appreciably with the ratio Te⊥/Te||: for Te⊥/Te|| = 2

the maximum growth rate, γ ≈ 3.8Ωci, is more than one order of magnitude larger than

the maximum growth rate for Te⊥/Te|| = 1 (γ ≈ 0.18Ωci). Moreover, the tearing mode

with maximum growth rate shifts to shorter wavelengths with increasing anisotropy: in the

case Te⊥/Te|| = 2 the maximum occurs for kxL = 2.25, considerably larger that the typical

kxL = 0.5 seen for isotropic electrons. It should be remarked that electron heating due to

LHDI does not lead to a simple electron distribution function (see Fig. 5), but assuming

a bi-Maxwellian distribution function, allows us to estimate the growth rate of the tearing

instability.

The tearing eigenmodes for Te⊥/Te|| = 2 and Te⊥/Te|| = 1 are compared in Fig. 8.

The most remarkable difference is in the structure of the potential φ, which is larger in the

presence of anisotropic electrons and with opposite sign. Moreover, for anisotropic electrons,

the tearing eigenmode involves a narrower region near the center of the current sheet and

the Az component is more important.

These results are consistent with the enhancement of the tearing instability growth rates

predicted in previous work [44, 45, 46, 60, 61, 62], but our results are obtained by integration

over exact orbits, similarly to Ref. [38]. As an aside, it should be remarked that our linear

analysis predicts that ion anisotropy plays only a minor role in thin current sheets (ρi ∼ L)

in agreement with earlier work by Burkhart and Chen [38].

The nonlinear evolution of the tearing mode changes dramatically when the electron tem-

perature is anisotropic. An initially favorable temperature anisotropy neutralizes the effect

of the unfavorable anisotropy created by the growth of tearing, which would otherwise cause

nonlinear stabilization. The evolution of the current sheet is followed in two-dimensional PIC

simulations in the (x, z) plane, starting with an anisotropic electron temperature. The GEM

challenge parameters are used with Ti/Te|| = 5 on the same domain Lx×Lz = 25.6L×12.8L,

but with various electron temperature anisotropies, Te⊥/Te|| = 1, 1.5, 2. In Fig. 9, the

evolution of the tearing instabilities with mode numbers mx = 1 − 11 (corresponding to

kxL = 0.25 − 3) are shown as a function of time. In comparison with the case for initially
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isotropic electrons (see Fig. 1), high mode numbers grow, forming a number of small tiny

islands. Subsequently, these small islands merge to form a single large island (the mode

number mx = 1 dominates), which encompass the whole domain by tΩci ≈ 20.

In Fig. 10, the reconnected flux is plotted as a function of time for the three differ-

ent anisotropies, Te⊥/Te|| = 1, 1.5, 2, for both NPIC and CELESTE3D simulations. With

Te||/Te⊥ = 1, tearing saturates at a low level. For anisotropic distributions, Te||/Te⊥ = 1.5, 2,

reconnection involves the whole domain and the growth of the tearing instability saturates

when all the available magnetic flux is reconnected, at a level very similar to the GEM chal-

lenge. The fast reconnection phase is delayed longer for Te⊥/Te|| = 1.5 than for Te⊥/Te|| = 2.

Figure 11 shows a plot of the temperature anisotropy as a function of time for the three

simulations with different initial anisotropies (Te⊥/Te|| = 1, 1.5, 2). The temperature ratio

(Teyy +Tezz)/2Texx that corresponds to Te⊥/Te|| at t = 0 is plotted. For an initially isotropic

distribution, Te⊥/Te|| = 1, the ratio decreases as a function of time and stabilizes the tearing

instability. For initially anisotropic distributions, the ratio Te⊥/Te|| decreases rapidly to a

minimum value, Te⊥/Te|| ≈ 0.8, and then increases with the onset of fast reconnection.

2. Current thinning and peaking

The thinning of the current sheet and consequent increase in maximum current density

also enhances the linear growth rate of the tearing instability and changes its non-linear

evolution. This is in agreement with the results of other recent simulation studies [30, 31].

Figure 12 shows the tearing instability linear growth rate, γ, for different values of the

current sheet thickness (ρi/L = 0.914, 1.828, 3.656). The growth rate is higher for thinner

current sheets: γ = 0.176Ωci for ρi/L = 1.828 (GEM challenge thickness) compared with

γ = 0.632Ωci for ρi/L = 3.656. The maximum growth rate is located at kxL = 0.5 in all

cases.

The non-linear evolution of the tearing instability is simulated with both NPIC and

CELESTE3D. For sufficiently thin current sheets, reconnection is not blocked by non-linear

saturation of the tearing mode at low levels and encompasses the whole domain. In Fig.

13, we show the evolution of the current sheet by plotting the reconnected flux, ∆Ψ, for

the Harris sheet with half the current sheet thickness as the GEM challenge (ρi/L = 3.656)
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from the simulations. A domain size Lx × Lz = 12.8di × 6.4di (corresponding to Lx × Lz =

51.2L×25.6L) is considered. Unlike the standard GEM challenge case without perturbation,

reconnection involves the whole domain by tΩci ≈ 20 for NPIC and by tΩci ≈ 13 for

CELESTE3D. It should be remarked that the fast reconnection phase is very similar in the

two codes. The delayed start of the fast reconnection phase in NPIC is probably because

more particles are used in NPIC than in CELESTE3D, which reduces the noisiness of the

initial conditions [23].

IV. CONCLUSION AND DISCUSSION

Reconnection onset is studied using results from two codes employing very different algo-

rithms: NPIC is a massively parallel explicit code and CELESTE3D is an implicit-moment

method PIC code. The results from NPIC and CELESTE3D complement and confirm each

other. This degree of cross-checking between codes, for which the GEM challenge is de-

signed, is unusual. Because of their differences in resolution, the agreement between explicit

and implicit results in detail suggests that the important physical length scales involved in

the onset of reconnection are comparable to or greater than the electron scales.

The simulations have pointed out the important role of the LHDI in reconnection on-

set. Our results confirm that the tearing instability saturates at a low level if no initial

perturbation is added to the Harris equilibrium. Linear growth of the tearing instability is

limited by increase in the parallel electron temperature, such that an anisotropy develops

with Te⊥/Te|| < 1 that strongly stabilizes the tearing mode. In three-dimensions, the tearing

instability does not saturate at small amplitudes. Because the mode spectrum reveals no

significant oblique mode growth, the current sheet dynamics can be analyzed by studying

the interrelationship between the current aligned instability that develops in the (y, z) plane

and the dynamics of the tearing modes in the (x, z) plane. The analysis shows that the

LHDI strongly modifies the linear and non-linear evolution of the tearing instability. The

LHDI causes a favorable electron temperature anisotropy, Te⊥/Te|| > 1, and thins and peaks

the current sheet. Both effects seem effective in enhancing the linear growth rate of the

tearing instability. With a favorable anisotropy and a thin enough current sheet, the tear-

ing instability grows large enough to decouple electrons and ions so that reconnection can
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encompass the whole domain.

In the current sheet considered there is no background plasma, the guide field is not

present and no normal component of the magnetic field is introduced. The influence of

these on reconnection onset needs further investigation.

Both laboratory and satellite observations [32, 33, 34] have pointed out the presence of

the LHDI near reconnection sites, but they have not identified a connection between this

instability and reconnection through a contributions to anomalous resistivity.

Satellites have measured electron anisotropy during magnetic substorms. Shinohara et al.

[34] observe electron anisotropy (Te⊥/Te|| < 1) at the substorm onset. A more comprehensive

study of the electron anisotropy during reconnection has been performed by Birn et al.

[63]. Through one-year average data of satellite measurements, it is shown that an electron

anistropy (Te⊥/Te|| > 1) precedes substorm onset. At onset, Te⊥/Te|| < 1 is observed.

After onset, Te⊥/Te|| grows again. This behavior recalls closely what is observed in tearing

simulations (see Fig. 11). Birn et al. [63] also show that an ion temperature anisotropy is less

relevant than an electron temperature anisotropy, and this also agrees with the simulations

presented here.

It is not obvious how to verify current sheet thinning from observations. Our simulation

starts with a plain Harris sheet from which the LHDI develops and thins the current sheet.

In reality, on the other hand, the LHDI is always present in current sheets with an amplitude

that corresponds to the saturation level for that particular current sheet. In particular, MRX

results [32, 33] show a thinning of the current sheet, and a consequent enhancement of the

amplitude of the LHDI instability. It is hard to say if the enhancement of the LHDI is a

cause or a consequence of the thinning process.
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• Fig. 1: The amplitude of the tearing mode are shown as a function of time for the mode

numbers mx = 1 (dashed), mx = 2 (dash-dotted), mx = 3 (dotted), and mx = 4 (solid)

(corresponding to kxL = 0.25, kxL = 0.5, kxL = 0.75, and kxL = 1, respectively),

during the two-dimensional simulation in the tearing, (x, z), plane. The results are

from an NPIC simulation.

• Fig. 2: The amplitude of the Fourier modes of the Bx component of the magnetic field

is shown as a function of the mode numbers mx and my at different times: tΩci = 0.2

(a), tΩci = 2.5 (b), tΩci = 5 (c), tΩci = 10 (d), tΩci = 15 (e), and tΩci = 20 (f). The

three-dimensional simulation performed by CELESTE3D is considered.

• Fig. 3: The amplitude of the Fourier modes of the Bz component of the magnetic field

is shown as a function of the mode numbers mx and my at different times: tΩci = 0.2

(a), tΩci = 2.5 (b), tΩci = 5 (c), tΩci = 10 (d), tΩci = 15 (e), and tΩci = 20 (f). The

three-dimensional simulation is performed by CELESTE3D.

• Fig. 4: The enhancement of the electron temperature ratio Te⊥/Te|| (a,c), and of the

ion temperature ratio Ti⊥/Ti|| (b,d) due to LHDI is shown from simulations in the (y, z)

plane. The temperature ratio is shown at time t = 0 (solid line, isotropic distribution)

and tΩci = 5 (dashed line). The results are from NPIC (a,b) and from CELESTE3D

(c,d).

• Fig. 5: The electron pressure ratios Pezz/Pexx (a) and Peyy/Pexx (b) averaged along

y are shown at time tΩci = 5. The results are from an NPIC simulation in the (y, z)

plane.

• Fig. 6: The peaking of the current density Jy is shown from the simulation in the

(y, z) plane. The dotted line represents the current profile at t = 0 averaged along y,

the profiles at tΩci = 4 is shown by the solid line (NPIC simulation) and dashed line

(CELESTE3D simulation). The current is normalized in order that the maximum is

equal to 1 at t = 0.

• Fig. 7: The growth rate γ/Ωci of the tearing mode is plotted as a function of kxL for

Te⊥/Te|| = 0.9 (dotted), Te⊥/Te|| = 1 (solid), Te⊥/Te|| = 1.5 (dashed), and Te⊥/Te|| = 2
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(dash-dotted). The other plasma parameters are the same as the parameters described

in Sect. II (in particular, Ti/Te⊥ = 5).

• Fig. 8: An eigenmode solution for the fastest tearing instability is shown. The real

(solid) and imaginary (dotted) parts are plotted for φ (a,e), Ax (b,f), Ay (c,g), and

Az (d,h) with Te⊥/Te|| = 1, kxL = 0.5, and γ = 0.176Ωci (a,b,c,d) , and Te⊥/Te|| = 2,

kxL = 2.25, and γ = 3.782Ωci(e,f,g,h).

• Fig. 9: The amplitude of the tearing mode is shown as a function of time for the

mode numbers mx = 1 and kxL = 0.25 (solid blue), mx = 2 and kxL = 0.5 (solid

green), mx = 3 and kxL = 0.75, (solid red), mx = 4 and kxL = 1, (solid cyan),

mx = 5 and kxL = 1.25, (solid magenta), mx = 6 and kxL = 1.5, (solid black), mx = 7

and kxL = 1.75 (dashed blue), mx = 8 and kxL = 2 (dashed green), mx = 9 and

kxL = 2.25, (dashed red), mx = 2.5 and kxL = 10, (dashed cyan), mx = 11 and

kxL = 2.75, (dashed magenta), and mx = 12 and kxL = 3, (dashed black), during the

two-dimensional simulation in the tearing plane with plasma parameters described in

Sect. II, but Te⊥/Te|| = 2 and Ti/Te⊥ = 2.5. The results are from an NPIC simulation.

• Fig. 10: The reconnected flux, ∆Ψ, is shown as a function of time, for simulations with

the parameters described in Sect. II (solid line), parameters described in Sect. II but

Te⊥/Te|| = 1.5 (dotted), and Ti/Te|| = 5 (dashed), and plasma parameters described in

Sect. II, but Te⊥/Te|| = 2 and Ti/Te|| = 5. Both NPIC results (a) and CELESTE3D

results (b) are shown.

• Fig. 11: The electron temperature ratio (Teyy +Tezz)/2Texx (corresponding to Te⊥/Te||

at t = 0) is plotted as a function of time, for simulations with the parameters described

in Sect. II (solid line), plasma parameters described in Sect. II, but Te⊥/Te|| = 1.5

(dotted), and Ti/Te|| = 5 (dashed), and parameters described in Sect. II but Te⊥/Te|| =

2 and Ti/Te|| = 5. The results are from NPIC.

• Fig. 12: The growth rate γ/Ωci of the tearing mode as a function of kxL is plotted for

plasma parameters described in Sect. II and different values of ρi/L.

• Fig. 13: The reconnected flux as a function of time is plotted for the simulation in

the (x, z) plane for a plasma with the plasma parameters described in Sect. II, but
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ρi/L = 3.656. NPIC (solid) and CELESTE3d (dashed) results are plotted.
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Table I. Simulation parameters

grid particles ∆tΩce

(x, z) plane (NPIC) 1280 × 640 16 · 107 0.03

(x, z) plane (CELESTE3D) 64 × 64 5 · 105 0.45

(y, z) plane (NPIC) 1600 × 640 2 · 108 0.03

(y, z) plane (CELESTE3D) 128 × 64 1 · 105 0.7
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